This is very interesting - an estimate of how much more energy would be required to bring everyone else in the world to a minimum energy usage level equivalent to Spain or Italy, and without reducing existing nations' energy consumption.

Short summary: It would be less than 80% increase overall. It would shift the present estimated fossil fuel reserve lifespan from 81 to 46 years. Think we might get more innovation and overall productivity, even disregarding the human welfare aspects, by having billions of more people educated and able to think of something besides survival?

Lots of folks claim that the worst possible thing we could do is to allow the third world to actually develop to the level of the industrialized nations. The conventional wisdom holds that there’s not enough fossil fuels in the world to do that, that fuel use would be ten times what it is today, that it’s not technically feasible to increase production that much, and that if we did that, the world would run out of oil in the very near future. I woke up this morning and for some reason I started wondering if that is all true. So as is my habit, I ran the numbers. I started with the marvelous graphing site, Gapminder, to take an overall look at the question. Here’s that graph:

Figure 1. Annual income per person (horizontal axis, constant dollars) versus annual energy use per person (tonnes of oil equivalent, denoted “TOE”). I’ve added the horizontal red line to show the global median per capita energy use, in TOE per person per year. (The median is the value such that half the population is above that value, and half is below the value.) Click here for the live version at Gapminder.

So … how much additional energy would it take to bring all countries up to a minimum standard? We could perhaps take the level of Spain or Italy as our target. They each use about 2.75 tonnes of oil equivalent (TOE) per capita per year, and they each have an annual income (GDP per capita) of about $26,000 per year. If that were true of everyone on the planet, well, that would be very nice, with much avoided pain and suffering. So how much energy would it take to bring the billions of people using less energy than the inhabitants of Spain and Italy, up to that 2.75 TOE level of consumption? Now, here’s the wrinkle. I don’t want to drag the top half down. I don’t want anyone to use less energy, energy is the lifeblood of development.

So I’m not proposing that the folks using more energy than Spain/Italy reduce their energy consumption. Quite the contrary, I want them to continue their energy use, that’s what keeps them well-fed and clothed and healthy and able to take care of the environment and the like. As a result, what I wanted to find out was the following:

How much extra energy would it take to bring everyone currently using less energy than Spain/Italy up to their usage level of 2.75 TOE/capita/year, while leaving everyone who was using more energy than Spain/Italy untouched?

So, remembering that the figures in the graph are per capita, what say ye all? If we want to bring the energy use of all those billions of people up to a European standard, and nobody’s energy usage goes down … would that take five times our current energy usage? Ten times? Here’s how I calculated it

First, I downloaded the population data and the per capita energy use data, both from the Gapminder site linked to in the caption to Figure 1. If you notice, at the bottom left of the graph there’s a couple of tiny spreadsheet icons. If you click that you get the data.

Then, I combined the two datasets, multiplying per capita energy use by the population to give me total energy use. There were a dozen or so very poor countries (Niger, Afghanistan, Central African Republic, etc) with no data on energy use. I arbitrarily assigned them a value of 0.3 TOC/capita, in line with other equivalent African countries.

Then, I checked my numbers by adding up the population and the energy use. For total energy use I got 11,677 million tonnes of oil equivalent (MTOE). The corresponding figure for 2009 from the BP Statistical Review of World Energy is 11,391 MTOE, so I was very happy with that kind of agreement. The population totaled ~ 6.8 billion, so that was right.

Then for each country, I looked at how much energy they were using. If it was more than 2.75 TOE/capita/year, I ignored them. They didn’t need extra energy. If usage was less than 2.75 TOE/capita/year, I subtracted what they were using from 2.75, and multiplied the result by the population to get the total amount of extra energy needed for that country. I repeated that for all the countries.

And at the end? Well, when I totaled the extra energy required, I was quite surprised to find out that to achieve the stated goal of bringing the world’s poor countries all up to the energy level of Spain and Italy, all that we need is a bit more than 80% more energy. I’ve triple-checked my figures, and that’s the reality. It wouldn’t take ten times the energy we use now. In fact it wouldn’t even take twice the energy we’re now using to get the poor countries of the world up to a comfortable standard of living. Eighty percent more energy use, and we’re there.

In closing let me note a couple of things. You can’t get up to the standard of living of Spain or Italy without using that much energy. Energy is development, and energy is income.

Second, the world’s poor people are starving and dying for lack of cheap energy today. Driving the price of energy up and denying loans for coal-fired power plants is depriving the poor of cheap energy today, on the basis that it may help their grandchildren in fifty years. That is criminal madness. The result of any policy that increases energy prices is more pain and suffering. Rich people living in industrialized nations should be ashamed of proposing such an inhumane way to fight the dangers of CO2, regardless of whether those dangers are imaginary or real.

Finally, regarding feeding and clothing the world, we’re getting there. It’s not that far to go, only 80% more than current energy usage rates to get the world up to the level of the industrialized nations.

Anyhow, just wanted to share the good news. The spreadsheet I used to do the calculations is here.


PS—Will this make the planet run out of fossil fuels sooner? Ask a person living on $3 per day on the streets of Calcutta if they care … but in any case, here’s the answer. As mentioned above, as of 2009 using about 11,500 MTOE per year. Total reserves of fossil fuel are given here as being about a million MTOE (although various people’s numbers vary). That doesn’t include the latest figures on fracked gas or tight oil. It also doesn’t include methane clathrates, the utilization of which is under development.

That means that at current usage rates we have at least 81 years of fossil fuels left, and under the above scenario (everyone’s energy usage at least equal to Spain and Italy) we have more than 46 years of fossil fuels left … ask me if I care. I’ll let the people in the year 2070 deal with that, because today we have poor people to feed and clothe, and we need cheap energy to do it. So I’d say let’s get started using the fossil energy to feed and clothe the poor, and if we have to double the burn rate to do that, well, that’s much, much better than having people watch their kids starve …